

Introduction to the Stat-JR software package

Professor William Browne

Video I What is StatJR

- A statistical software package written in Python and first released in 2013.
- Named after our former colleague Jon Rasbash and pronounced "Stature".
- Stat-JR is meant to appeal to novice users, expert users and other algorithm developers
- It has its own MCMC estimation engine built into the software but also allows interoperability with other software packages (this talk).
- Has several interfaces including an electronic book interface including "statistical analysis assistant" features (talk 2).
- Can also be used to create "bespoke" training materials in combination with the SPSS software package (talk 3).

StatJR component based approach

Below is an early diagram of how we envisioned the system. Here you will see boxes representing components some of which are built into the STAT-JR system. The system is written in Python with a VB.net algebra processing system. A team of coders have worked together on the system.

Templates

Backbone of Stat-JR.

- Consist of a set of code sections for advanced users to write. A bit like R packages.
- For a model template it consists of at least:
- an *inputs* method which specifies inputs and types
- A model method that creates (BUGS like) model code for the algebra system
- An (optional) *latex* method can be used for outputting LaTeX code for the model.

Other optional functions required for more complex templates

Regression I Example

```
from EStat.Templating import *
```

```
model = '''
model{
  for (i in 1:length({y})) {
     {y}[i] \sim dnorm(mu[i], tau)
     mu[i] <-  {mmult(x, 'beta', 'i')}
   }
   # Priors
   % for i in range(0, x.ncols()):
   beta${i} ~ dflat()
   % endfor
  tau ~ dgamma(0.001000, 0.001000)
   sigma2 <- 1 / tau
   sigma <- 1 / sqrt(tau)
}
...
     latex = r'''
\begin{aligned}
mbox{\{y\}} i \& \min mbox{\{N\}(mu i, sigma^2) \}}
\mu i & =
 {\rm (mmulttex(x, r'beta', 'i')} \
% for i in range(0, len(x)):
\beta ${i} & \propto 1 \\
%endfor
\tau & \sim \Gamma (0.001,0.001) \\
\sqrt{2 & = 1 / tau}
\end{aligned}
```

An example of STAT-JR – setting up a model

Stat-JR 1.0.3:TREE ×	
← → C	公 👪 🖂 😑
Stat-JR:TREE Start again Dataset - (tutorial) Template - (Regression1)	Ready (1s) Settings Debug –
• Response:	normexam remove
@ Explanatory variables:	cons,standIrt remove
Number of chains:	3 remove
Random Seed:	1 remove
Length of burnin:	500 remove
• Number of iterations:	2000 remove
Thinning:	1 remove
Use default algorithm settings:	Yes remove
Generate prediction dataset:	No remove
Use default starting values:	Yes remove
• Name of output results:	out
	lext
Current input string: {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains': '3', 'defaultsv': Set	talg': 'Yes', 'iterations': '2000', 'y': 'normexam', 'x': 'cons,standirt', 'seed': '1', 'makepred': 'No'}
Command: RunStatJR(template='Regression1', dataset='tutorial', invars = {'y': 'normex' '3', 'defaultalg': 'Yes', 'iterations': '2000', 'seed': '1', 'makepred': 'No'})	am', 'x': 'cons,standIrt'}, estoptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains':

An example of STAT-JR – setting up a model

	Response:	normexam remove	
Stat-JR 1.0.3:TREE ×			
← → C □ localhost:51610/i	OExplanatory variables:	cons,standlrt remove	☆ 👪 😫 🗎
Stat-JR: I REE Start again			Ready (1s) Settings Debug -
	Number of chains:	3 remove	
	Random Seed:	1 remove	
	Length of burnin:	500 remove	
	Number of iterations:	2000 remove	
	Thinning:	1 remove	
	lise default algorithm settings:	Voo	
	ose deladit algorithm settings.	res remove	
	Generate prediction dataset:	Yes remove	
Current i			'seed': '1', 'makepred': 'No'}
	Use default starting values:	Yes remove	
Commar '3', 'defaulta			'es', 'thinning': '1', 'nchains':
	Name of output results:	out	

Equations for model

→ C Diocalhost:8080/run/		☆ 日本
t-JR:TREE Start again Dataset -	tutorial Template - Regression1	Ready (3s) Settings De
Current input string: {'burnin': '500', 'default makepred': 'No'}	sv': 'Yes', 'outdata': 'out', 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes', 'it	terations': '2000', 'y': 'normexam', 'x': 'cons,standirt', 'seed': '1',
Command: RunStatJR(template='Regression	n1', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standIrt'}, esto	ptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains'
Command: RunStatJR(template='Regressions', 'defaultalg': 'Yes', 'iterations': '2000', 'outda	n1', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standIrt'}, esto ta': 'out', 'seed': '1', 'makepred': 'No'})	ptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains'
Command: RunStatJR(template='Regressio ', 'defaultalg': 'Yes', 'iterations': '2000', 'outda dit equation.tex • Popou	n1', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standlrt'}, esto ta': 'out', 'seed': '1', 'makepred': 'No'})	ptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains'
Command: RunStatJR(template='Regressions': '2000', 'outdat', 'defaultalg': 'Yes', 'iterations': '2000', 'outdat Edit equation.tex • Popou	n1', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standIrt'}, esto ta': 'out', 'seed': '1', 'makepred': 'No'}) $normexam_i \sim N(\mu_i, \sigma^2)$	ptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains'
Command: RunStatJR(template='Regressic b', 'defaultalg': 'Yes', 'iterations': '2000', 'outda Edit equation.tex • Popou	n1', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standIrt'}, esto ta': 'out', 'seed': '1', 'makepred': 'No'}) $normexam_i \sim N(\mu_i, \sigma^2)$ $\mu_i = \beta_0 cons_i + \beta_1 standIrt_i$	ptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains'
Command: RunStatJR(template='Regressio i', 'defaultalg': 'Yes', 'iterations': '2000', 'outda Edit equation.tex • Popou	n1', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standIrt'}, esto ta': 'out', 'seed': '1', 'makepred': 'No'}) $normexam_i \sim N(\mu_i, \sigma^2)$ $\mu_i = \beta_0 cons_i + \beta_1 standIrt_i$ $\beta_0 \propto 1$	ptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains'
Command: RunStatJR(template='Regressions', 'defaultalg': 'Yes', 'iterations': '2000', 'outda Edit equation.tex • Popou	n1', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standIrt'}, esto ta': 'out', 'seed': '1', 'makepred': 'No'}) normexam _i ~ N(μ_i, σ^2) $\mu_i = \beta_0 \text{cons}_i + \beta_1 \text{standIrt}_i$ $\beta_0 \propto 1$ $\beta_1 \propto 1$	ptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains'
Command: RunStatJR(template='Regression 3', 'defaultalg': 'Yes', 'iterations': '2000', 'outda Edit equation.tex • Popou	n1', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standIrt'}, esto ta': 'out', 'seed': '1', 'makepred': 'No'}) normexam _i ~ N(μ_i, σ^2) $\mu_i = \beta_0 \text{cons}_i + \beta_1 \text{standIrt}_i$ $\beta_0 \propto 1$ $\beta_1 \propto 1$ $\tau \sim \Gamma(0.001, 0.001)$	ptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains'

 All objects created available from one pull down and can be popped out to separate tabs in browser.

Equations for model

$$egin{aligned} \operatorname{normexam}_i &\sim \operatorname{N}(\mu_i, \sigma^2) \ &\mu_i &= eta_0 \operatorname{cons}_i + eta_1 \operatorname{standlrt}_i \ η_0 &\propto 1 \ η_1 &\propto 1 \ & au & au &\sim \Gamma(0.001, 0.001) \ &\sigma^2 &= 1/ au \end{aligned}$$

 Note: Equations use MATHJAX and so underlying LaTeX can be copied and paste. The model code is based around the WinBUGS language with some variation.

Model code

Stat-JR 1.0.2:TREE ×		X
► → C Dialhost:8080/run/	云 記 1 1 1 1 1 1 1 1 1 1 1 1 1	3 =
Stat-JR:TREE Start again Dataset - tutorial Template - Regress	ion1 Ready (3s) Settings De	bug -
Current input string: {'burnin': '500', 'defaultsv': 'Yes', 'outdata': 'out', 'thinning': '1', 'n 'makepred': 'No'} Set	:hains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'y': 'normexam', 'x': 'cons,standIrt', 'seed': '1',	
Command: RunStatJR(template='Regression1', dataset='tutorial', invars = {'y': 'norm '3', 'defaultalg': 'Yes', 'iterations': '2000', 'outdata': 'out', 'seed': '1', 'makepred': 'No'})	exam', 'x': 'cons,standlrt'}, estoptions = {'burnin': '500', 'defaultsv': 'Yes', 'thinning': '1', 'nchains':	
Edit model.txt Popout		
model{		
<pre>for (i in 1:length(normexam)) {</pre>		
normexam[i] ~ dnorm(mu[i], tau)		
<pre>imu[i] <= cons[i] = beca_0 + scandic[i] = beca_i }</pre>		
# Priors		
beta_0 ~ dTlat()		
tau ~ dgamma(0.001000, 0.001000)		
sigma2 <- 1 / tau		
sigma <- 1 / sqrt(tau)		
}		
)

 All objects created available from one pull down and can be popped out to separate tabs in browser. Model code in detail

```
model{
  for (i in 1:length(normexam)) {
    normexam[i] ~ dnorm(mu[i], tau)
    mu[i] <- cons[i] * beta0 + standIrt[i] * beta1
}
#Priors
  beta0 ~ dflat()
  beta1 ~ dflat()
  tau ~ dgamma(0.001000, 0.001000)
  sigma2 <- 1 / tau
  sigma <- 1/sqrt(tau)
```

For this template the code is, aside from the length function, standard WinBUGS model code.

Algebra system steps

Algebra system steps

Stat-JR 1.0.2:TREE	× Jr Stat-JR 1.0.2:TREE × Jr Stat-JR 1.0.2:TREE ×	×
	host:8080/output/algorithm.tex	1 =
Stat-JR:TREE		
	LaTeX version of algorithm Conditional posterior for tau for Gibbs sampling	
	$\tau \sim \Gamma \left(0.001 + 0.5 \times \text{length}(\text{normexam}), 0.001000 + \frac{\sum_{i=1}^{\text{length}(\text{normexam})} \left(\text{normexam}_i - \text{beta_0} \times \text{cons}_i - \text{beta_1} \times \text{standlrt}_i\right)^2}{2}\right)$	
	Deviance Function	
	$deviance = 2 \times \left(\frac{\tau \times \left(\sum_{i=1}^{length(normexam)} \left(normexam_i - beta_0 \times cons_i - beta_1 \times standlrt_i \right)^2 \right)}{2} + 0.5 \times (ln(\pi) - ln(\tau)) \times length(normexam) + 0.346573590279973 \times length(normexam) + 0.34657359029 \times length(normexam) + 0.34657359029 \times length(normexam) + 0.346573902 \times length(normexam) + 0.3465739029 \times length(normexam) + 0.3465739029 \times length(norm$	am)
	Conditional posterior for beta_0 for Gibbs sampling	
	$\mathrm{beta_0} \sim \mathrm{N} \left(\frac{\tau \times \left(\sum_{i=1}^{length(normexam)} \mathrm{cons}_i \times \left(\mathrm{normexam}_i - \mathrm{beta_1} \times \mathrm{standlrt}_i \right) \right)}{\tau \times \left(\sum_{i=1}^{length(normexam)} \mathrm{cons}_i^2 \right)}, \tau \times \left(\sum_{i=1}^{length(normexam)} \mathrm{cons}_i^2 \right) \right)$	
	Conditional posterior for beta_1 for Gibbs sampling	
	$beta_1 \sim N \left(\frac{\tau \times \left(\sum_{i=1}^{length(normexam)} standlrt_i \times \left(normexam_i - beta_0 \times cons_i \right) \right)}{\tau \times \left(\sum_{i=1}^{length(normexam)} standlrt_i^2 \right)}, \tau \times \left(\sum_{i=1}^{length(normexam)} standlrt_i^2 \right) \right)$	
	Deterministic formula for parameter sigma	
	$\sigma = rac{1}{\operatorname{sqrt}(au)}$	
	Deterministic formula for parameter sigma2	
	$\sigma_2=rac{1}{ au}$	

Algebra system steps

Use Gibbs sampling from conditional posterior for beta1:

$$\beta_{1} \sim N \left(\frac{\tau \times \left(\sum_{i=1}^{length(normexam)} standlrt_{i} \times \left(normexam_{i}^{-\beta_{0} \times cons_{i}} \right) \right)}{\tau \times \left(\sum_{i=1}^{length(normexam)} standlrt_{i}^{-2} \right)}, \tau \times \left(\sum_{i=1}^{length(normexam)} standlrt_{i}^{-2} \right) \right)$$

 $\beta_1 \sim \mathrm{N}(0.000249799765395 \times (2382.12631198 + \beta_0 \times (-7.34783096611)), 4003.20632175 \times \tau)$

- Here the first line is what is returned by the algebra system – which works solely on the model code.
- The second line is what can be calculated when values are added for constants and data etc.
- System then constructs C code and fits model

Output of generated C++ code

The package can output C++ code that can then be taken away by software developers and modified.

Output of generated C++ code

```
// Update beta1
{
    beta1 = dnorm((0.000249799765395*(2382.12631198+(beta0*(-
            7.34783096611)))),(4003.20632175*tau));
}
// Update beta0
{
    beta0 = dnorm((((-0.462375992909)+((-
            7.34783096611)*beta1))*0.000246366100025),(tau*4059.0));
}
```

 Note now that the code includes the actual data in place of constants and so looks less like the familiar algebraic expressions

Output from the E-STAT engine

Stat-JR 1.0.2:TREE	×	100 M	Height Cold Height		
$\leftarrow \rightarrow \mathbf{C}$ Dicalhos	st:8080/run/				i 🖸 🗉
Stat-JR:TREE State	art again Dataset	late - Regression1		Ready (1s) Settings	Debug 🗸
ModelResults	▼ Popout				
		Results			
		Parameters:			
parameter	mean	sd	ESS	variable	
tau	1.54160995074	0.0340065114631	5799		
beta_0	-0.00127835184871	0.0125770014327	5960	cons	
beta_1	0.594959154334	0.012745358164	6129	standlrt	
sigma2	0.648987956705	0.0143068971085	5784		
sigma	0.805548947358	0.00887975878981	5789		
deviance	9763.48848832	2.43302399601	6061		
		Model:			
	Statistic		Value		
	Dbar		9763.48848832		
	D(thetabar)		9760.50978897		
	pD		2.97869934714		
	DIC		9766.46718766		

 Estimates and the DIC diagnostic can be viewed for the model fitted.

Output from the E-STAT engine

E-STAT offers multiple chains so that we can use multiple chain diagnostics to aid convergence checking.

Graphics are in svg format so scale nicely.

Interoperability with WinBUGS (Regression 2)

Stat-JR 1.0.2:TREE ×	
← → C D localhost:8080/run/#	숬 🏙 💟 🗏
Stat-JR:TREE Start again Dataset • tutorial Template • Regression	Ready (fa) Settings Debug -
@ Response:	normexam remove
Explanatory variables:	cons,standirt remove
Choose estimation engine:	WinBUGS remove
Number of chains:	3 remove
Random Seed:	1 remove
Length of burnin:	500 remove
Number of iterations:	2000 remove
Thinning:	1 remove
Name of output results:	out remove
Use default starting values:	Yes remove
R	un .

- This template offers the choice of many software packages for fitting a regression model.
- STAT-JR checks what is installed on the machine and only offers packages that are installed. Here we choose WinBUGS.
- Interoperability in the user interface is obtained via a few extra inputs. In fact in the template code user written functions are required for all packages apart from WinBUGS, OpenBUGS and JAGS. The transfer of data between packages is however generic.

Interoperability with WinBUGS (Regression 2)

Stat-JR 1.0.2:TREE × ★ → C □ localhost:8080/run/#		☆ 🎎 🛤 =
Stat-JR:TREE Start again Dataset - tutorial Template - Regression2	Ready (14s)	Settings Debug -
script.txt Popout		
<pre>display('log') check('c:/users/frwjb/appdata/local/temp/tmp0b7av5/model.txt') data('c:/users/frwjb/appdata/local/temp/tmp0b7av5/inits1.txt') inits(1, 'c:/users/frwjb/appdata/local/temp/tmp0b7av5/inits2.txt') inits(2, 'c:/users/frwjb/appdata/local/temp/tmp0b7av5/inits3.txt') gen.inits() set.seed() update(500) set('beta_1') set('beta_1') set('beta_1') set('sigma')</pre>		

- Here we can view the files required to run WinBUGS in the pane (script file shown but model, inits and data also available)
- The model can be run by press of a button.

Interoperability with R

	×		4.4 14405			
→ C □ loc	alhost:8080/run/#				27 BK	M
at-JR:TREE	Start again 🛛 Dataset -	(tutorial) Template - Regressio	n2	Ready (1s)		Debuç
		O Response:	normexam remove			
		Explanatory variables:	cons,standIrt remove			
		Choose estimation engine:	R_gIm remove			
			Run			
Command: Ru	unStatJR(template='Regressio	n2', dataset='tutorial', invars = {'y': 'norme;	xam', 'x': 'cons,standIrt'}, estoptions = {'Engine': 'R_gl	m'})		
Command: Ru	unStatJR(template='Regressio	n2', dataset='tutorial', invars = {'y': 'norme:	kam', 'x': 'cons,standirt'), estoptions = {'Engine': 'R_gi	m'})		
Command: Rt Edit Script.F local({r <- g # # # # # # #	Popout Popout getOption("repos"); r["CRAN	<pre>n2', dataset='tutorial', invars = {'y': 'norme; "] <- "http://cran.r-project.org"; op # # # # # # # # # # # # # # # # #</pre>	<pre>kam', 'x': 'cons,standIrt'}, estoptions = {'Engine': 'R_gi tions(repos = r)})</pre>	m'})		
Command: RU Edit Script.F	Popout Popout getOption("repos"); r["CRAN # # # # # # # # # # # # # when Stat-JR interoperates to wherever the user's temp	<pre>n2', dataset='tutorial', invars = {'y': 'norme; "] <- "http://cran.r-project.org"; op # # # # # # # # # # # # # # with R, it sets the working orary files are stored, i.e.</pre>	<pre>kam', 'X': 'cons,standIrt'), estoptions = {'Engine': 'R_gl tions(repos = r)})</pre>	m'})		
Command: RU Edit Script.R	<pre>unStatJR(template='Regressio R Popout getOption("repos"); r["CRAN ####################################</pre>	<pre>n2', dataset='tutorial', invars = {'y': 'norme: ""] <- "http://cran.r-project.org"; op # # # # # # # # # # # # # with R, it sets the working orary files are stored, i.e. odelled, this script, and the there</pre>	<pre>xam', 'x': 'cons.standIrt'), estoptions = {'Engine': 'R_gl tions(repos = r)})</pre>	m'})		
Command: Ru Edit script.F	etOption("repos"); r["CRAN et = ###################################	<pre>n2', dataset='tutorial', invars = {'y': 'norme: "] <- "http://cran.r-project.org"; op # # # # # # # # # # # # # with R, it sets the working orary files are stored, i.e. odelled, this script, and the there. # # # # # # # # # # # # # # # #</pre>	<pre>xam', 'x': 'cons,standirt'), estoptions = {'Engine': 'R_gi tions(repos = r)})</pre>	m'})		
Command: Rt Edit Script.R local({r <- g # # # # # # # Note that v # directory # # workdir = t # files expor # # # # # # # test to see	Popout Popout	<pre>n2', dataset='tutorial', invars = {'y': 'norme; "] <- "http://cran.r-project.org"; op # # # # # # # # # # # # # # with R, it sets the working orary files are stored, i.e. odelled, this script, and the there. # # # # # # # # # # # # # # # eady installed, if not, then install</pre>	<pre>xam', 'x': 'cons,standIrt'}, estoptions = {'Engine': 'R_gI tions(repos = r)}) it</pre>	m'})		
Command: Rt Edit Script.R local({r <- g # # # # # # # Note that w # directory t # workdir = t # test to see if (!require(instal).c	<pre>getOption("repos"); r["CRAN getOption("repos"); r["CRAN ####################################</pre>	<pre>n2', dataset='tutorial', invars = {'y': 'norme: ""] <- "http://cran.r-project.org"; op # # # # # # # # # # # # with R, it sets the working orary files are stored, i.e. odelled, this script, and the there. # # # # # # # # # # # # # # eady installed, if not, then install</pre>	<pre>xam', 'x': 'cons,standIrt'), estoptions = {'Engine': 'R_gI tions(repos = r)}) it</pre>	m'})		
Command: Ru Edit script.R local({r <- g # # # # # # Note that w # directory # # workdir = 1 # files expor # # # # # # # test to see if (!require(install.r library(1)	<pre>getOption("repos"); r["CRAN getOption("repos"); r["CRAN ####################################</pre>	<pre>n2', dataset='tutorial', invars = {'y': 'norme: ""] <- "http://cran.r-project.org"; op # # # # # # # # # # # # # with R, it sets the working orary files are stored, i.e. odelled, this script, and the there. # # # # # # # # # # # # # # eady installed, if not, then install</pre>	<pre>xam', 'x': 'cons,standIrt'), estoptions = {'Engine': 'R_gI tions(repos = r)}) it</pre>	m'})		

- R can be chosen as another alternative. In fact here we have 2 choices – glm or MCMCglmm.
- You will see in the pane the script file ready for input to R. There will also be the data file that R requires.

Interoperability with R

- If written in to the code in the template graphics from other software can be extracted.
- Here for example is a residual plot associated with the R fit of the model.

Other templates - XYplot

Stat-JR 1.0.2:TREE	× 🐉 Stat-JR 1.0.2:TREE ×			
← → C 🗋 localho	st:8080/run/#		ବ 🏫 👪	▶ Ξ
Stat-JR:TREE Start again	n Dataset + Extorial Template + (XYPlot)	ady (1s)	Settings	Debug +
	Y values: normexam remove			
	X values: standlrt remove			- 1
	Download Add to ebook			- 1
	Current input string: {xaxis': 'standlit', 'yaxis': 'normexam'}			
	• Command: RunStatJR(template='XYPIot', dataset='tutoriaf', invars = ('xaxis': 'standirt', 'yaxis': 'normexam'), estoptions = {})			- 1
	graphty.svg V Popout			- 1
				- 1
	4			
	3- 2-			
				Ŧ

- There are also templates for plotting. For example here is a plot using the XYplot template.
- Shown is the plot whilst the Python command script is also available.
- For more details on StatJR go to <u>http://www.bristol.ac.uk/cmm/software/statjr/</u>

For more information visit www.ncrm.ac.uk

