
Introduction to the Stat-JR software

package

Professor William Browne

Video 1 What is StatJR

• A statistical software package written in Python and first released
in 2013.

• Named after our former colleague Jon Rasbash and pronounced
“Stature”.

• Stat-JR is meant to appeal to novice users, expert users and
other algorithm developers

• It has its own MCMC estimation engine built into the software but
also allows interoperability with other software packages (this
talk).

• Has several interfaces including an electronic book interface
including “statistical analysis assistant” features (talk 2).

• Can also be used to create “bespoke” training materials in
combination with the SPSS software package (talk 3).

StatJR component based approach

Below is an early diagram of how we envisioned the system. Here you will see

boxes representing components some of which are built into the STAT-JR

system. The system is written in Python with a VB.net algebra processing

system. A team of coders have worked together on the system.

Templates

Backbone of Stat-JR.

Consist of a set of code sections for advanced users to

write. A bit like R packages.

For a model template it consists of at least:

• an inputs method which specifies inputs and types

• A model method that creates (BUGS like) model code

for the algebra system

• An (optional) latex method can be used for outputting

LaTeX code for the model.

Other optional functions required for more complex

templates

Regression 1 Example
from EStat.Templating import *

class Regression1(Template):

'A model template for fitting 1 level Normal multiple regression model

in eStat only.‘

tags = ['Model', '1-Level', 'eStat', 'Normal']

engines = ['eStat']

inputs = '''

y = DataVector('Response: ')

x = DataMatrix('Explanatory variables: ', allow_cat=True, help=

'predictor variables')

beta = ParamVector(parents=[x], as_scalar=True)

tau = ParamScalar()

sigma = ParamScalar(modelled = False)

sigma2 = ParamScalar(modelled = False)

deviance = ParamScalar(modelled = False)

'''

model = '''

model{

for (i in 1:length(${y})) {

${y}[i] ~ dnorm(mu[i], tau)

mu[i] <- ${mmult(x, 'beta', 'i')}

}

Priors

% for i in range(0, x.ncols()):

beta${i} ~ dflat()

% endfor

tau ~ dgamma(0.001000, 0.001000)

sigma2 <- 1 / tau

sigma <- 1 / sqrt(tau)

}

'''

latex = r'''

\begin{aligned}

\mbox{${y}}_i & \sim \mbox{N}(\mu_i, \sigma^2) \\

\mu_i & =

${mmulttex(x, r'\beta', 'i')} \\

%for i in range(0, len(x)):

\beta_${i} & \propto 1 \\

%endfor

\tau & \sim \Gamma (0.001,0.001) \\

\sigma^2 & = 1 / \tau

\end{aligned}

'''

An example of STAT-JR – setting up a model

An example of STAT-JR – setting up a model

Equations for model

– All objects created available from one pull down

and can be popped out to separate tabs in browser.

Equations for model

• Note: Equations use MATHJAX and so underlying LaTeX can be

copied and paste. The model code is based around the

WinBUGS language with some variation.

Model code

• All objects created available from one pull down and
can be popped out to separate tabs in browser.

Model code in detail

model{

for (i in 1:length(normexam)) {

normexam[i] ~ dnorm(mu[i], tau)

mu[i] <- cons[i] * beta0 + standlrt[i] * beta1

}

Priors

beta0 ~ dflat()

beta1 ~ dflat()

tau ~ dgamma(0.001000, 0.001000)

sigma2 <- 1 / tau

sigma <- 1/sqrt(tau)

}

For this template the code is, aside from the length function,

standard WinBUGS model code.

Algebra system steps

Algebra system steps

Algebra system steps

• Here the first line is what is returned by the algebra

system – which works solely on the model code.

• The second line is what can be calculated when

values are added for constants and data etc.

• System then constructs C code and fits model

Output of generated C++ code

• The package can output C++ code that can then be
taken away by software developers and modified.

Output of generated C++ code

// Update beta1

{

beta1 = dnorm((0.000249799765395*(2382.12631198+(beta0*(-

7.34783096611)))),(4003.20632175*tau));

}

// Update beta0

{

beta0 = dnorm((((-0.462375992909)+((-

7.34783096611)*beta1))*0.000246366100025),(tau*4059.0));

}

• Note now that the code includes the actual data in place of

constants and so looks less like the familiar algebraic

expressions

Output from the E-STAT engine

– Estimates and the DIC diagnostic can be viewed

for the model fitted.

Output from the E-STAT engine

• E-STAT offers
multiple chains so
that we can use
multiple chain
diagnostics to aid
convergence
checking.

• Graphics are in svg
format so scale
nicely.

Interoperability with WinBUGS (Regression 2)

• This template offers the choice of many software packages for fitting a
regression model.

• STAT-JR checks what is installed on the machine and only offers
packages that are installed. Here we choose WinBUGS.

• Interoperability in the user interface is obtained via a few extra inputs. In
fact in the template code user written functions are required for all
packages apart from WinBUGS, OpenBUGS and JAGS. The transfer of
data between packages is however generic.

Interoperability with WinBUGS (Regression 2)

• Here we can view the files required to run WinBUGS in the pane (script
file shown but model, inits and data also available)

• The model can be run by press of a button.

Interoperability with R

• R can be chosen as another alternative. In fact here we have 2 choices
– glm or MCMCglmm.

• You will see in the pane the script file ready for input to R. There will also
be the data file that R requires.

Interoperability with R

• If written in to the code in the template – graphics from other software
can be extracted.

• Here for example is a residual plot associated with the R fit of the model.

Other templates - XYplot

• There are also templates for plotting. For example here is a plot using the XYplot template.

• Shown is the plot whilst the Python command script is also available.

• For more details on StatJR go to http://www.bristol.ac.uk/cmm/software/statjr/

http://www.bristol.ac.uk/cmm/software/statjr/

Useful websites for further information

• www.understandingsociety.ac.uk (a

‘biosocial’ resource)

• www.closer.ac.uk (UK longitudinal

studies)

• www.ukdataservice.ac.uk (access data)

• www.metadac.ac.uk (genetics data)

• www.ncrm.ac.uk (training and

information)

http://www.understandingsociety.ac.uk/
http://www.closer.ac.uk/
http://www.ukdataservice.ac.uk/
http://www.metadac.ac.uk/
http://www.ncrm.ac.uk/

